Machine Learning Lunch Meeting
Dual Operating Modes of In-Context Learning
Event Details
*Note the unusual time and room*
Everyone is invited to the weekly machine learning lunch meetings, where our faculty members from Computer Science, Statistics, ECE, and other departments will discuss their latest groundbreaking research in machine learning. This is an opportunity to network with faculty and fellow researchers while learning about the cutting-edge research being conducted at our university. See https://sites.google.com/view/wiscmllm/home for more information.
Speaker: Kangwook Lee (ECE)
Abstract: In this talk, I will present our recent work on in-context learning (ICL), which was conducted in collaboration with my student, Ziqian Lin. ICL exhibits dual operating modes: task learning, i.e., acquiring a new skill from in-context samples, and task retrieval, i.e., locating and activating a relevant pretrained skill. Recent theoretical work investigates various mathematical models to analyze ICL, but existing models explain only one operating mode at a time. We introduce a probabilistic model, with which one can explain the dual operating modes of ICL simultaneously. Focusing on in-context learning of linear functions, we extend existing models for pretraining data by introducing multiple task groups and task-dependent input distributions. We then analyze the behavior of the optimally pretrained model under the squared loss, i.e., the MMSE estimator of the label given in-context examples. Regarding pretraining task distribution as prior and in-context examples as the observation, we derive the closed-form expression of the task posterior distribution. With the closed-form expression, we obtain a quantitative understanding of the two operating modes of ICL. Furthermore, we shed light on an unexplained phenomenon observed in practice: under certain settings, the ICL risk initially increases and then decreases with more in-context examples. Our model offers a plausible explanation for this "early ascent" phenomenon: a limited number of in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk, which will eventually diminish as task learning takes effect with more in-context samples. We also theoretically analyze ICL with biased labels, e.g., zero-shot ICL, where in-context examples are assigned random labels. Lastly, we validate our findings and predictions via experiments involving Transformers and large language models.